GOVT. DR. INDRAJEET SINGH COLLEGE, AKALTARA DISTT. JANJGIR-CHAMPA (C.G.)

Web site- www.gdiscakaltara.in//Email ID- gdiscakaltara@gmail.com//Phone- 07817-252540

College Code- 3003

PROGRAMME OUTCOMES, PROGRAMME SPECIFIC OUTCOMES AND COURSE OUTCOMES <u>DEPARTMENT OF CHEMISTRY</u> PROGRAM – BSc, CHEMISTRY

PROGRAM OUTCOME

After successful completion of three year degree program in Chemistry a student should be able to-

PO-1. Demonstrate, solve and an understanding of major concepts in all disciplines of chemistry.

PO-2. Solve the problem and also think methodically, independently and draw a logical conclusion.

PO-3. Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of chemical reactions.

PO-4. Create an awareness of the impact of chemistry on the environment, society, and development outside the scientific community.

PO-5. Find out the green route for chemical reaction for sustainable development.

PO-6. To inculcate the scientific temperament in the students and outside the scientific community.

PO-7. Use modern techniques, decent equipments and Chemistry softwares.

PROGRAM SPECIFIC OUTCOME

PSO1. Have sound knowledge about the fundamentals and applications of chemical and Scientific theories.

PSO2. Every branch of Science and Technology is related to Chemistry

PSO3. Easily assesses the properties of all elements discovered.

PSO4. Apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories and in industries.

PSO5. Will become familiar with the different branches of chemistry like analytical, organic, inorganic, physical, environmental, polymer and biochemistry PSO6. Helps in understanding the causes of environmental pollution and can open up new Methods for environmental pollution control.

PSO7. Develops analytical skills and problem solving skills requiring application of chemical principles.

PSO8. Acquires the ability to synthesise, separate and characterize compounds using laboratory and instrumentation techniques.

COURSE OUTCOME

SN	CLASS	PAPER	COURSE OUTCOME
1	BSc I	INORGANIC	CO1. Knowledge of atomic structure and periodic properties of
		CHEMISTRY	elements.
			CO2. Understand various types of bonding in covalent
			molecules and ions.
			CO3. Understand various types of bonding in ionic solids.
			Programme Specific Outcome and can open up new Methods
			for environmental pollution control.
			CO4. Comparative knowledge of s-block elements of periodic
			table and there compounds. Chemistry of noble gases.
			CO5. Comparative knowledge of s-block elements of periodic
			table and there compounds. Chemical principles involve in
2	DO I	ODCANIC	inorganic chemical analysis.
2	BSc I	ORGANIC	CO1. Knowledge of electronic structure, bonding and
		CHEMISTRY	mechanism of organic reactions.
			CO2. Knowledge of stereochemistry of organic compounds.
			CO3. Understand Chemistry of aliphatic and aromatic ring compounds.
			CO4. Understand Chemistry of alkenes, dienes and alkynes.
			CO5. Understand Chemistry of arenes and aromaticity.
3	BSc I	PHYSICAL	CO1. Understand the idea of mathematical concepts for
C	2.501	CHEMISTRY	chemists and basic knowledge of computer.
			CO2. Knowledge of various types of molecular velocities and
			their effect on properties. Understand behaviour of ideal gases.
			CO3. Understand intermolecular forces in liquid state, ideal
			and non ideal solutions, properties of dilute solutions.
			CO4. Understand structure, properties and uses of liquid
			crystals. Colloidal states and its properties and uses.
			CO5. Understand chemical kinetics rate constant and order of
			reactions and various theories. Characteristics types and
			industrial applications of catalysis.
4	BSc I	Practical work	CO1. Analyse qualitatively acid and basic radicals by semi-
			micro analysis method.
			CO2. Calibration of thermometers.
			CO3. Determination of melting point and boiling point of
			organic compounds.
			CO3. Mixed melting point determination.
			CO4 Crystallization
			CO5. Decolourisation and crystallization using charcoal.
			CO6. Sublimation.

			 CO7. Detection of Nitrogen, Sulphur and Halogens and detection of functional group present in organic compounds. CO8. To determine specific rate of hydrolysis of methyl/ethyl acetate catalysed by hydrogen ion at room temperature. CO9. To study distribution of iodide between water and carbon tetra chloride. CO10. To determine the % composition of a given mixture by viscosity method.
5	BSc II	INORGANIC CHEMISTRY	 CO1. Understand chemistry of first transition series elements. CO2. Understand chemistry of second and third transition series elements. CO3. Understand Oxidation and reduction. Coordination compounds. CO4. Understand chemistry of lanthanides and actinides. CO5. Understand Acid and bases and non-aqueous solvents.
6	BSc II	ORGANIC CHEMISTRY	 CO1. Understand chemistry of alcohols, phenols and epoxides. CO2. Understand chemistry of aldehydes and Ketons and its uses. CO3. Understand chemistry of carboxylic acid, substituted carboxylic acids and there derivatives. CO4. Understand Chemistry of organic compound of nitrogen. CO5. Understand Chemistry of heterocyclic compounds and amino acids & peptides.
7	BSc II	PHYSICAL CHEMISTRY	 CO1. Understand first law of thermodynamics and thermo chemistry. CO2. Understand second law of thermo chemistry, efficiency of a heat engine and concept of entropy. CO3. Understand phase equilibrium, Gibbs rule, and application of phase rule to two component systems and three component systems and Nernst distribution law. CO4. Understand electrolytic conductance, theories of strong electrolytes and migration of ions. CO5. Understand electrochemical cell or galvanic cell, single electrode potential, concentration cell, pH and its determination and corrosion.
8	BSc II	Practical work	 CO1. Calibration of fractional weights, pipettes and burettes. CO2. Preparation of standard solutions CO3. Quantitative volumetric estimation of vinegar, antacid tablets, chalk, hardness of water, ferrous & ferric and copper. CO3.Colorimery: Jobs method and mol ratio method. CO4. Adulteration in food stuffs. CO5. Effluent analysis. CO6. Water analysis. CO7.Solvant extraction- separation and estimation of Mg and Fe. CO8. Ion exchange method; separation and estimation of Mg

			and 7n
			and Zn. CO9. Thin layer chromatography: Determination of Rf value
			and identification of organic compounds.
			CO10. Paper chromatography Ascending and circular,
			Determination of Rf value and identification of organic
			compounds
			-
			CO11. Qualitative analysis: identification of an organic
			compound.
			CO12. Determination of the transition temperature of given
			substance by thermometric/ dialometric method.
			CO13. To study of a solute on the critical solution temperature
			of two partially miscible liquids
			CO14. Construct the phase diagram of two component system
			by cooling curve method.
			CO15. Determine the solubility of benzoic acid at different
			temperature.
			CO16. Determine the enthalpy of neutralization and ionization.
9	BSc III	INORGANIC	CO1. Understand metal ligand bonding in transition metal
Í	2.50 111	CHEMISTRY	complexes. Thermodynamics and kinetic aspects of metal
			complexes. Thermodynamics and kneete aspects of metal
			CO2. Understand magnetic properties of transition metal
			0 1 1
			complexes and electronic spectra of complexes.
			CO3. Understand chemistry of organometallic compounds.
			CO4.undrstand bioinorganic chemistry.
			CO5. Understand hard and soft acids and bases and silicones
			and phosphazenes.
10	BSc III	ORGANIC	CO1. Understand chemistry of organometallic compounds,
		CHEMISTRY	organosulphur compounds and organic synthesis via enolates.
			CO2. Understand biomolecules carbohydrates, proteins and
			nucleic acid.
			CO3. Understand Chemistry of synthetic polymers and
			synthetic dyes.
			CO4. Understand mass spectroscopy, infrared spectroscopy,
			UVVisible spectroscopy and application of mass, IR, UV-
			Visible spectroscopy to organic molecules.
			CO5. Understand NMR spectroscopy and ¹³ CMR spectroscopy
			and magnetic resonance imaging.
11	BSc III	PHYSICAL	CO1.Understand Quantum Mechanics black body radiation,
		CHEMISTRY	DeBroglie's idea of matter waves, Schrödinger time
			independent wave equation and its applications.
			CO2. Understand quantum mechanical approach to molecular
			orbital theory, Orbitals and there characteristics.
			CO3. Understand Vibrational and Raman spectra.
			CO4. Understand Third law of thermodynamics, Nernst
			theorem and its application. Physical property and molecular
			structure, Magnetic properties.

r	1		
			CO5. Understand of chemical kinetics rate constant and order
			ofreactions and various theories. Characteristics types and
			industrial applications of catalysis.
12	BSc III	Practical work	CO1. Synthesis analysis of sodium trioxalato ferrate(III).
			CO2. Preparation of Ni-DMG.
			CO3. Preparation of Copper tetra ammine complex.
			CO3. Preparation of cis- and trans-bioxalato diaqua
			chromate(III).
			CO4. Gravimetric analysis of Cu as CuSCN, Ni as Ni(DMG),
			Ba as BaSO4 and Fe as Fe_2O_3
			CO5. Steam distillation: Naphthalene from its suspension in
			water, Clove oils from clove, Separation of ortho and para-
			nitrophenols.
			CO6. Separation of fluorescein and methelene blue by column
			chromatography.
			CO7. Separation of leaf pigments from Spinach leave by
			column chromatography.
			CO8. Resolution of recemic mixture of (+,-) maleic acid by
			column chromatography.
			CO9. Analysis of an organic mixture containing two solid
			components.
			CO10 Acetylation of salicylic acid, aniline, glucose and
			hydroquinone.
			CO11. Benzoylation of aniline and phenol.
			CO 12. Preparation of m-dinitrobenzene, p-nitroacetanilide.
			CO13. Preparation of p-bromoacetanilide, 2,4,6-
			tribromophenol.
			CO14. Preparation of methyl orange and methyl red.
			CO15. Preparation of benzoic acid from toluene.
			CO16. Preparation of aniline from nitrobenzene, preparation of
			mnitro aniline from m-dinitrobenzene.
			CO17. Determine strength of given acid conductometrically
			using standard alkali solution.
			CO18. Study of saponification of ethyl acetate
			conductometrically.
			CO19. Determine the specific rotation of a given optically
			active compound.
			CO20. Determination of molecular weight of a non-volatile
			solute by Rast method/ Beckmann freezing point method.
			CO21. Verify Beer-Lambert law for $KMnO_4/K_2Cr2O_7$ and
			determination of concentration of the given solution of the
			solution.
L	l	1	solution.

PROGRAM – MSc, CHEMISTRY

PROGRAM OUTCOME

After successful completion of two year degree programme in chemistry a student should be able to-

PO-1.Demonstrate, solve and an understanding of major concepts in all disciplines of Chemistry.

PO-2. Solve the problem and also think methodically, independently and draw a logical conclusion.

PO-3. Create an awareness of the impact of chemistry on the society, and development outside the scientific community.

PO-4. Become professionally trained in the area of Industry, material science, lasers and Nano-Technology.

PO-5. Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of Chemistry experiments.

PO-6. To inculcate the scientific temperament in the students and outside the scientific community.

PO-7. Apply modern methods of analysis to chemical systems in a laboratory setting.

PROGRAM SPECIFIC OUTCOME

PSO1 Provide theoretical background and develop practical skills for analysing materials using modern analytical methods and instruments,

PSO2 Inculcate a problem solving approach by coordinating the different branches of chemistry.

PSO3 Becomes professionally skilled for higher studies in research institutions and to work in chemical industries.

PSO4 In-depth knowledge helps to qualify in competitive exams.

COURSE OUTCOME

SN	CLASS	PAPER	COURSE OUTCOME
1	MSc I	INORGANIC	CO1. Understand stereochemistry and bonding in main
	SEM.	CHEMISTRY	group
			compounds.
			CO2. Understand metal ligand bonding.
			CO3. Understand electronic spectra of transition metal
			complexes.
			CO4. Understand magnetic properties of transition
			metal complexes.

			CO5 Understand service and matrix services static
			CO5. Understand symmetry and matrix representation.
-		ODCANIC	CO6. Understand group theory in chemistry.
2	MSc I	ORGANIC	CO1. Understand reaction intermediates.
	SEM.	CHEMISTRY	CO2. Understand nature of bonding in organic
			molecules.
			CO3. Understand stereochemistry.
			CO4. Understand reaction mechanism: structure and
			reactivity.
			CO5. Understand pericyclic reactions.
			CO6. Understand molecular rearrangement
3	MSc I	PHYSICAL	CO1. Understand Introduction to exact quantum
	SEM.	CHEMISTRY	mechanical results.
			CO2. Understand approximate methods and angular
			momentum.
			CO3. Understand electronic structure of atom.
			CO4. Understand molecular orbital theory.
			CO5. Understand chemical dynamics.
			CO6. Understand surface chemistry.
			CO7. Understand macromolecules
4	MSc I	Laboratory Course-I :	CO1. Separation, purification and identification of
	SEM.	ORGANIC	binary organic mixture.
	2111	CHEMISTRY	CO2. Organic synthesis based on various reactions.
			CO3. Quantitative estimation of various organic
			compounds.
5	MSc II	INORGANIC	CO1. Understand metal ligand equilibrium in solution.
	SEM.	CHEMISTRY	CO2. Understand reaction mechanism of transition
	SENT.		metal complexes.
			CO3. Understand metal clusters.
			CO4. Understand metal carbonyls and metal nitrosyls.
			CO5. Understand isopoly and hetropoly acid and salts.
6	MSc II	ORGANIC	CO1. Understand aliphatic electrophilic substitution.
0	SEM.	CHEMISTRY	CO2. Understand aliphatic nucleophilic substitution.
	SLIVI.	CHENIISTKT	CO3. Understand aromatic nucleophilic substitution.
			CO4. Understand free radical reaction.
			CO5. Understand addition to carbon-carbon multiple
			bond.
			CO6. Understand addition to carbon-hetero multiple
			bonds.
7			CO7. Understand elimination reactions.
7	MSC II	PHYSICALCHEMIS	CO1. Understand classical thermodynamics.
	SEM.	TRY	CO2. Understand statistical thermodynamics.
			CO3. Understand non equilibrium thermodynamics.
			CO4. Understand electrochemistry.
			CO5. Understand electro catalysis.
1			
			CO6. Understand electron diffraction and neutron diffraction.

8	MSc II	SPECROSCOPY,	CO1. Understand atomic spectroscopy.
0	SEM.	DIFFRACTION	CO2. Understand molecular spectroscopy.
	SEIVI.	METHODS &	CO3. Understand photo electric spectroscopy.
		COMPUTER FOR	CO4. Understand Nuclear magnetic resonance
			e
		CHEMISTS	spectroscopy.
			CO5. Understand Electron spin resonance
			spectroscopy.
			CO6. Understand photo acoustic spectroscopy.
			CO7. Understand X-ray diffraction.
			CO8. Understand computer fundamental.
			CO9. Understand programming in C.
			CO10. Understand programming in chemistry and use
			of computer programmes
9	MSc II	Laboratory Course-I:	CO1. Qualitative analysis of mixture containing eight
	SEM.	INORGANIC	radicals including some less common metal ions.
		CHEMISTRY	CO2. Quantitative analysis involving two ions in alloys
			or mixture in solution- one by volumetric and other by
			gravimetric method.
			CO3. Quantitative Analysis:-involving two of
			following in ores, alloys or mixture in solution- one by
			volumetric and other by gravimetric method Ag, Cu,
			Fe, Cr, Mn, Ni, Zn, Ca, Mg, Chloride, Sulphate.
			CO4. Estimation of:-
			(A) Phosphoric acid in Commercial ortho phosphoric
			acid.
			(B) Boric Acid in Borax.
			(C) Ammonium ion in Ammonium Salt.
			(D) MnO in pyrolusite
			(E) Available Cnl0rlne, in bleaching powder.
			(F) H ₂ O ₂ in commercial sample.
			CO5. Preparation of selected inorganic compounds and
			study of their properties by various method including
			IR, Electronic Spectra, Mossbauer, ESR. Spectra,
			Magnetic susceptibility etc.
			(i) V(acac)2
			(i) $cis K[Cr(C_2O_4)_2(H_2O)_2],$
			(ii) $[Co(NH_3)_6]Cl_3$, trans $K[Cr(C_2O_4)_2(H_2O)_2].2H_2O$
			(iv) Na [Cr(NH3)2 (SCN)4]
			(v) Mn (acac) ₃
			(v) $\text{Wit}(\text{acac})^3$ (vi) $\text{K4}[\text{Fe}(\text{C2O4})_3]$
			(vi) R4 [Fe(C2O4)3] (vii) Prussian Blue, Turnbull's Blue.
			(viii) $[Co (NH_3)4] [Co(NO_2)6]$
			(ix) Hg [Co(SCN)4]
			(x) $[Ni(NH_3)4]Cl_2$,
			(xi) Ni (DMG)2, (xii)[Cu(NH.)4SO4
			(xii) K ₃ [Cr(C ₂ O ₄) ₃].3H2O

			(xiii) [Cu(NH3)4]SO4
10	MSc II	Laboratory Course-II:	CO1. Verification of Freundlich's Adsorption
	SEM.	PHYSICAL	isotherm.
		CHEMISTRY	CO2. To study surface tension - concentration
			relationship for. solutions (Gibbs equation).
			CO3. Determination of congruent composition and
			temperature of binary system e.g. diphenylamine -
			benzophenone system.
			CO4. Determination of glass transition temperature of
			given salt e.g. CaCl ² conductometrically.
			CO5. To construct the phase diagram for three
			component system e.g. chloroform, acetic acid and
			water.
			CO6. Hydrolysis of an ester/ ionic reactions.
			CO7. Determination of the velocity constant of
			hydrolysis of an ester. Determination of effect of (a)
			change of temperatures, (b) change of concentration of
			reactants and catalyst and(c) ionic strength of the
			media on the velocity constant of media.
			CO8. Determination of the rate constant for the
			oxidation of iodide ions by hydrogen peroxide.
			CO9. Determination of the primary salt effect on the
			kinetics of ionic reaction and Testing of the Bronsted
			relationship (iodide ions oxidized by persulphate ion).
			CO10. Determination of solubility of sparingly soluble
			salt (e.g.,PbSO4, BaSO4) Conductometrically.
			CO11. Determination of the strength of strong and
			weak acids in a given mixture conductometrically.
			CO12. Determination of dissociation constant of weak
			electrolyte by conductometer.
			CO13Determination of velocity constant, Order of
			reaction and energy of activation for Saponification of
			ethyl acetate by sodium hydroxide.
			CO14. Determination of the strength of strong and
			weak acid in a given mixture using pH
			meter/potentiometer.
			CO15. Determination of dissociation constant of weak
			acid by Ph meter.
			CO16. Determination of concentration of acid in given
			buffer solution by pH meter.
			CO17. Determination of strength of halides in a
			mixture
			potentiometrically.
			CO18. Determination of the valency of mercurous ions
			potentiometrically.
			CO19. Determination of the strength of strong acid,

			· · · · · · · · · ·
			weak acids in a given mixture using a potentiometer/
			pH meter.
			CO20. Determination of temperature dependence of
			EMF of a cell.
			CO21. Determination of the formation constant of
			silver- ammonia complex and stoichiometry of the
			complex potentiometrically.
			CO22. Determination of activity and activity
			coefficient of electrolytes.
			CO23. Determination of thermodynamic constant. ΔG ,
			Δ S and Δ H for the reaction by e.m.f. method. Zn +
			$H_2SO_4 = ZnSO_4 + H_2$
			CO24. Determination of the dissociation constant of
			monobasic / dibasic acid.
			CO25. Determination of rate constant for
			hydrolysis/inversion of sugar using a polarimeter.
			Enzyme kinetic - inversion of sucrose.
			CO26. Determination of molecular weight of non-
			volatile and nonelectrolyte/ electrolytes by cryoscopy
			method and to determine the
			activity coefficient of an electrolyte.
			CO27. Determination of the degree of dissociation of
			weak electrolyte and to study the deviation from ideal
			behaviour that occurs with a strong electrolyte.
11	MSc III	APPLICATIONS OF	CO1. Understand Vibrational spectroscopy.
11	SEM.	SPECTROSCOPY	CO2. Understand Electron spin resonance
	SLIVI.	(COMPULSORY)	spectroscopy.
		(COMICLEORI)	CO3. Understand Nuclear Magnetic Resonance of
			Paramagnetic substances in solution
			CO4. Understand Ultraviolet and Visible
			Spectroscopy.
			CO5. Understand Nuclear Magnetic Resonance
			Spectroscopy.
			CO6. Understand Carbon-13 NMR Spectroscopy.
			CO7. Understand mass Spectrometry.
12	MSc III	CHEMISTRY OF	CO1. Understand Metal ions in Biological Systems.
14	SEM.	BIO-INORGANIC &	CO2. Understand transport and storage of dioxygen.
	JL141.	BIO.ORGANIC	CO3. Understand introduction of bioorganic chemistry.
		(COMPULSORY)	CO4. Understand enzymes.
			CO5. Understand kind of reactions catalysed by
			enzymes.
			CO6. Understand Co-enzyme chemistry.
			CO7. Understand enzyme models.
			CO8. Understand biotechnological application of
12	MSc III	ΟΡΟΛΝΟΤΡΑΝΟΙΤΙ	enzymes.
13	INISC III	ORGANOTRANSITI	CO1. Understand Alkyls and Aryls of Transition

14	SEM. MSc III	ON METAL CHEMISTRY (Optional for group- A, Inorganic Chemistry) PHOTOINORGANIC	 Metals. CO2. Understand Compounds of transition Metal- Carbon multiple bond. CO3. Transition Metal π-complexes. CO4. Understand Transition Metal Compounds with Bonds to Hydrogen. CO5. Understand Fluxional Organometallic Compounds. CO6. Understand homogeneous catalysis. CO1. Understand basics of photochemistry.
	SEM.	CHEMISTRY (Optional for group- A, Inorganic Chemistry)	 CO2. Understand properties of exited states. CO3. Understand exited states of metal complexes. CO4. Understand ligand field photochemistry. CO5. Understand metal complex sensitizers. CO6. Understand redox reactions by exited metal molecules.
15	MSc IV SEM.	PHOTOCHEMISTRY & SOLID STATE CHEMISTRY (Optional for group A, Inorganic Chemistry)	 CO1. Understand photochemistry reaction. CO2. Understand determination of reaction mechanism. CO3. Understand photochemistry of alkenes. CO4. Understand photochemistry of carbonyl compounds. CO5. Understand photochemistry of aromatic compound. CO6. Understand miscellaneous photochemical reactions. CO7. Understand solid state reactions. CO8. Understand crystal defects and nonstoichiometry. CO9. Understand electronic property and band theory.
16	MSc IV SEM.	BIO-PHYSICAL & ENVIRONMENTAL CHEMISTRY (Optional for group-A, Inorganic Chemistry)	 CO1. Understand Biological cell and its constituents. CO2. Understand Statistical mechanics in biopolymers. CO3. Understand Biopolymer interactions. CO4. Understand Thermodynamics of biopolymer solutions. CO5. Understand Cell Membrane and Transport of Ion. CO6. Understand Biopolymer and their Molecular Weights. CO7. Understand diffraction method. CO8. Understand Environment. CO9. Understand Hydrosphere. CO10. Understand water quality parameter. CO11. Understand industrial pollution
17	MSc IV SEM.	BIOINORGANIC CHEMISTRY &	CO1. Understand Metal Storage Transport and Biomineralization.

		SUPRAMOLECULAR	CO2.Understand Metalloenzymes
		CHEMISTRY	CO3.Understand Peroxidise and cytochrome p-450.
		(Optional for group-A,	Copper enzymes.
		Inorganic Chemistry)	CO4.Understand Metal-Nucleic Acid Interactions
			CO5.Understand Metals in Medicine.
			CO6.Understand Molecular recognition.
			CO7.Understand Transport processes and carrier
			designs. Understand supra-molecular chemistry.
18	MSc IV	ANALYTICAL	CO1. Understand Introduction, classification and
	SEM.	CHEMISTRY	various technique of analytical chemistry.
		(Optional for	CO2. Understand Error and Evaluation.
		group-A, Inorganic	CO3. Understand Food Analysis.
		Chemistry)	CO4. Understand Analysis of Water Pollution.
			CO5. Understand Analysis of Soil Fuel.
			CO6. Understand Fuel analysis.
19	MSc IV	Laboratory Course-:	CO1. Preparation of selected inorganic compounds and
	SEM.	(SPECIAL	their study by IR, electronic spectra, Mossbauer, ESR,
		CHEMISTRY)	and magnetic susceptibility measurements. Handling of
		PHOTO INORGANAIC &	air and moisture sensitive compounds involving
		ORGANO-TRANSITION	vacuum lines.
		CHEMISTRY	CO2. Kinetics and mechanism of following reactions:
			i. Substitution reactions in octahedral complexes (acid
			hydrolysis and base hydrolysis).
			ii. Redox reaction in octahedral
			iii. Isomerisation reaction of octahedral.
			CO3. Extraction of chlorophyll from green leaves of
			student's choice. Separation of chlorophylls and their
			electronics spectral study.
			CO4. Complexation study of Cu (II) ion with
			biologically important amino acids.
			CO5. Synthesis of potassium ferrioxalate and
			determination of the intensity of radiation. ii. Photo-
			oxidation of oxalic by U02 sensitization. iii.
			Photodecomposition of HI and Determinant of its
			quantum yield.
L			quantani yicia.